In today’s digital age, AI-powered tools are revolutionizing the way we interact with our devices. One such area is mobile keyboards, which have become smarter and more efficient with the integration of artificial intelligence. AI keyboards have revolutionized mobile typing, transforming it from a tedious task into a seamless and efficient experience. By leveraging artificial… →
Knowledge bases like Wikidata, Yago, and DBpedia have served as fundamental resources for intelligent applications, but innovation in general-world knowledge base construction has been stagnant over the past decade. While Large Language Models (LLMs) have revolutionized various AI domains and shown potential as sources of structured knowledge, extracting and materializing their complete knowledge remains a… →
In the world of massive-scale cloud infrastructure, even the slightest dip in performance can lead to significant inefficiencies. Imagine a change that causes an application to become 0.05% slower—a number that seems insignificant at first glance. However, at the scale of Meta, where millions of servers run continuously to keep services operational for billions of… →
Sentiment analysis, i.e., determining the emotional tone of a text, has become a crucial tool for researchers, developers, and businesses to comprehend social media trends, consumer feedback, and other topics. With its robust library ecosystem, Python provides a vast choice of tools to improve and streamline sentiment analysis processes. Through the use of these libraries,… →
Accessible mammography datasets and advanced machine-learning methods are key to enhancing computer-aided breast cancer diagnosis. However, limited access to private datasets, selective image sampling from public databases, and partial code availability hinder these models’ reproducibility and validation. These limitations create barriers for researchers aiming to advance in this field. Breast cancer causing 670,000 deaths worldwide… →
Time series forecasting has long been integral to finance, healthcare, meteorology, and supply chain management. Its main objective is to predict future data points based on historical observations, which can be challenging due to the complex and varying nature of time series data. Recent advancements in machine learning, particularly foundation models, have transformed this domain… →
The deployment of AI chatbots has long been a significant challenge for organizations, particularly for those without the necessary technical expertise or infrastructure to support advanced AI models. Developing AI chatbots requires training complex models, managing cloud resources, optimizing inference, and maintaining compatibility across platforms. As a result, many businesses find themselves either compromising on… →
Artificial Intelligence (AI) continues to evolve rapidly, but with that evolution comes a host of technical challenges that need to be overcome for the technology to truly flourish. One of the most pressing challenges today lies in inference performance. Large language models (LLMs), such as those used in GPT-based applications, demand a high volume of… →
Precise control over language models is crucial for developers and data scientists. Large language models like Claude from Anthropic offer remarkable opportunities, but managing tokens effectively is a key challenge. Anthropic’s Token Counting API addresses this by providing detailed insights into token usage, enhancing efficiency and control over language model interactions. Why Token Counting Matters… →
Retrieval-Augmented Generation (RAG) has significantly enhanced the capabilities of large language models (LLMs) by incorporating external knowledge to provide more contextually relevant and accurate responses. However, this technique comes with a major downside: it often leads to high computational and memory costs. These challenges are primarily due to the injection of long sequences of external… →