The field of artificial intelligence is advancing rapidly, yet significant challenges remain in developing and applying AI systems, particularly in complex reasoning. Many current AI solutions, including advanced models like GPT-4 and Claude 3.5 Sonnet, still struggle with intricate coding tasks, deep conversations, and mathematical reasoning. The limitations of individual models—no matter how sophisticated—lead to…
Recommender systems have been widely applied for studying user preferences; however, they face significant challenges in accurately capturing user preferences, particularly in the context of neural graph collaborative filtering. While these systems use interaction histories between users and items through Graph Neural Networks (GNNs) to mine latent information and capture high-order interactions, the quality of…
Identifying gene deletion strategies for growth-coupled production in genome-scale metabolic models presents significant computational challenges. Growth-coupled production, which links cell growth to the synthesis of target metabolites, is essential for metabolic engineering applications. However, deriving gene deletion strategies for large-scale models places high computational demand since there is a massive search space combined with the…
In recent times, Retrieval-augmented generation (RAG) has become popular due to its ability to solve challenges using Large Language Models, such as hallucinations and outdated training data. A RAG pipeline consists of two components: a retriever and a reader. The retriever component finds useful information from an exterior knowledge base, which is then included alongside…
Self-supervised learning on offline datasets has permitted large models to reach remarkable capabilities both in text and image domains. Still, analogous generalizations for agents acting sequentially in decision-making problems are difficult to attain. The environments of classical Reinforcement Learning (RL) are mostly narrow and homogeneous and, consequently, hard to generalize. Current reinforcement learning (RL) methods…
Support Vector Machines (SVMs) are a powerful and versatile supervised machine learning algorithm primarily used for classification and regression tasks. They excel in high-dimensional spaces and are particularly effective when dealing with complex datasets. The core principle behind SVM is to identify the optimal hyperplane that effectively separates data points into different classes while maximizing…
Large Language Models (LLMs) have revolutionized artificial intelligence applications across various fields, enabling domain experts to use pre-trained models for innovative solutions. While LLMs excel at tasks like summarization, correlation, and inference, developing LLM-based applications remains a dynamic area of research across various input sources. Knowledge Graphs (KGs) serve as powerful tools that can be…
Understanding biomolecular interactions is crucial for fields like drug discovery and protein design. Traditionally, determining the three-dimensional structure of proteins and other biomolecules required costly and time-consuming laboratory experiments. AlphaFold3, launched in 2024, revolutionized the field by demonstrating that deep learning could achieve experimental-level accuracy in predicting biomolecular structures, including complex interactions. Despite these advances,…