Category Added in a WPeMatico Campaign
Causal models are crucial for explaining the causal relationships among variables. These models help to understand how various factors interact and influence each other in complex systems. However, it is challenging to find the probabilities related to interventions and conditioning at the same time. Moreover, AI research has focused on two types of models: functional…
NVIDIA has recently introduced NV-Embed on Hugging Face, a revolutionary embedding model poised to redefine the landscape of NLP. This model, characterized by its impressive versatility and performance, has taken the top spot across multiple tasks in the Massive Text Embedding Benchmark (MTEB). Licensed under cc-by-nc-4.0 and built on a large language model (LLM) architecture,…
Many developers and researchers working with large language models face the challenge of fine-tuning the models efficiently and effectively. Fine-tuning is essential for adapting a model to specific tasks or improving its performance, but it often requires significant computational resources and time. Existing solutions for fine-tuning large models, like the common practice of adjusting all…
The Generative Pre-trained Transformer (GPT) series, developed by OpenAI, has revolutionized the field of NLP with its groundbreaking advancements in language generation and understanding. From GPT-1 to GPT-4o and its subsequent iterations, each model has significantly improved architecture, training data, and performance. Let’s do a comprehensive technical overview of the GPT series, backed by key…
Federated learning enables collaborative model training by aggregating gradients from multiple clients, thus preserving their private data. However, gradient inversion attacks can compromise this privacy by reconstructing the original data from the shared gradients. While effective on image data, these attacks need help with text due to their discrete nature, leading to only approximate recovery…
Symflower has recently introduced DevQualityEval, an innovative evaluation benchmark and framework designed to elevate the code quality generated by large language models (LLMs). This release will allow developers to assess and improve LLMs’ capabilities in real-world software development scenarios. DevQualityEval offers a standardized benchmark and framework that allows developers to measure & compare the performance…
Knowledge-intensive Natural Language Processing (NLP) involves tasks requiring deep understanding and manipulation of extensive factual information. These tasks challenge models to effectively access, retrieve, and utilize external knowledge sources, producing accurate and relevant outputs. NLP models have evolved significantly, yet their ability to handle knowledge-intensive tasks still needs to be improved due to their static…
LLMs have emerged as powerful tools for a wide range of applications. However, their open-ended nature poses unique challenges when it comes to security, safety, reliability, and ethical use….topics essential when building for a production level AI solutions. Example of Risks : Rogue chatbot: The Air Canada chatbot promised a discount, and now the airline…
In a recent study, a team of researchers from MIT introduced the linear representation hypothesis, which suggests that language models perform calculations by adjusting one-dimensional representations of features in their activation space. According to this theory, these linear characteristics can be used to understand the inner workings of language models. The study has looked into…
Large Language Models (LLMs) have advanced natural language processing tasks significantly. Recently, using LLMs for physical world planning tasks has shown promise. However, LLMs, primarily autoregressive models, often fail to understand the real world, leading to hallucinatory actions and trial-and-error behavior. Unlike LLMs, humans utilize global task knowledge and local state knowledge to mentally rehearse…