Generative AI models, driven by Large Language Models (LLMs) or diffusion techniques, are revolutionizing creative domains like art and entertainment. These models can generate diverse content, including texts, images, videos, and audio. However, refining the quality of outputs requires additional inference methods during deployment, such as Classifier-Free Guidance (CFG). While CFG improves fidelity to prompts,…
Large language models (LLMs) often fail to consistently and accurately perform multi-step reasoning, especially in complex tasks like mathematical problem-solving and code generation. Despite recent advancements, LLMs struggle to detect and learn from errors because they are predominantly trained on correct solutions. This limitation leads to difficulties in verifying and ranking outputs, particularly when subtle…
Large language models (LLMs) have made significant progress in language generation, but their reasoning skills remain insufficient for complex problem-solving. Tasks such as mathematics, coding, and scientific questions continue to pose a significant challenge. Enhancing LLMs’ reasoning abilities is crucial for advancing their capabilities beyond simple text generation. The key challenge lies in integrating advanced…
Mixture of Experts (MoE) models are becoming critical in advancing AI, particularly in natural language processing. MoE architectures differ from traditional dense models by selectively activating subsets of specialized expert networks for each input. This mechanism allows models to increase their capacity without proportionally increasing the computational resources required for training and inference. Researchers are…
One of the most pressing challenges in the evaluation of Vision-Language Models (VLMs) is related to not having comprehensive benchmarks that assess the full spectrum of model capabilities. This is because most existing evaluations are narrow in terms of focusing on only one aspect of the respective tasks, such as either visual perception or question…
The current challenges in text-to-speech (TTS) systems revolve around the inherent limitations of autoregressive models and their complexity in aligning text and speech accurately. Many conventional TTS models require complex elements such as duration modeling, phoneme alignment, and dedicated text encoders, which add significant overhead and complexity to the synthesis process. Furthermore, previous models like…
Recent progress in LLMs has spurred interest in their mathematical reasoning skills, especially with the GSM8K benchmark, which assesses grade-school-level math abilities. While LLMs have shown improved performance on GSM8K, doubts remain about whether their reasoning abilities have truly advanced, as current metrics may only partially capture their capabilities. Research suggests that LLMs rely on…
Automatic benchmarks like AlpacaEval 2.0, Arena-Hard-Auto, and MTBench have gained popularity for evaluating LLMs due to their affordability and scalability compared to human evaluation. These benchmarks use LLM-based auto-annotators, which align well with human preferences, to provide timely assessments of new models. However, high win rates on these benchmarks can be manipulated by altering output…
Large language models (LLMs) have demonstrated impressive capabilities in in-context learning (ICL), a form of supervised learning that doesn’t require parameter updates. However, researchers are now exploring whether this ability extends to reinforcement learning (RL), introducing the concept of in-context reinforcement learning (ICRL). The challenge lies in adapting the ICL approach, which relies on input-output…
Model merging is an advanced technique in machine learning aimed at combining the strengths of multiple expert models into a single, more powerful model. This process allows the system to benefit from the knowledge of various models while reducing the need for large-scale individual model training. Merging models cuts down computational and storage costs and…