Large language models (LLMs) such as GPT-4 and Llama are at the forefront of natural language processing, enabling various applications from automated chatbots to advanced text analysis. However, the deployment of these models is hindered by high costs and the necessity to fine-tune numerous system settings to achieve optimal performance. The deployment of LLMs involves…
Tokenization is essential in computational linguistics, particularly in the training and functionality of large language models (LLMs). This process involves dissecting text into manageable pieces or tokens, which is foundational for model training and operations. While effective tokenization can significantly enhance a model’s performance, issues arise when tokens within the model’s vocabulary are underrepresented or…
The exploration of AI has progressively focused on simulating human-like interactions through sophisticated AI systems. The latest innovations aim to harmonize text, audio, and visual data within a single framework, facilitating a seamless blend of these modalities. This technological pursuit seeks to address the inherent limitations observed in prior models that processed inputs separately, often…
In the dynamic field of AI technology, a pressing challenge for the drug discovery (DD) community, especially in structural biology and computational chemistry, is the creation of innovative models finely tuned for drug design. The core challenge lies in accurately and efficiently predicting molecular properties crucial for understanding protein-ligand interactions and optimizing binding affinities, essential…
Anomaly detection has gained traction in various fields such as surveillance, medical analysis, and network security. Typically approached as a one-class classification problem, autoencoder (AE) models are commonly used. However, AEs tend to reconstruct anomalies too well, reducing discrimination between normal and abnormal data. Memory-based networks and pseudo anomalies have been proposed to address this…
The domain of large language model (LLM) quantization has garnered attention due to its potential to make powerful AI technologies more accessible, especially in environments where computational resources are scarce. By reducing the computational load required to run these models, quantization ensures that advanced AI can be employed in a wider array of practical scenarios…
Vision Transformers (ViT) and Convolutional Neural Networks (CNN) have emerged as key players in image processing in the competitive landscape of machine learning technologies. Their development marks a significant epoch in the ongoing evolution of artificial intelligence. Let’s delve into the intricacies of both technologies, highlighting their strengths, weaknesses, and broader implications on copyright issues…
Molecular representation learning is an essential field focusing on understanding and predicting molecular properties through advanced computational models. It plays a significant role in drug discovery and material science, providing insights by analyzing molecular structures. The fundamental challenge in molecular representation learning involves efficiently capturing the intricate 3D structures of molecules, which are crucial for…
Language models, a subset of artificial intelligence, focus on interpreting and generating human-like text. These models are integral to various applications, ranging from automated chatbots to advanced predictive text and language translation services. The ongoing challenge in this field is enhancing these models’ efficiency and performance, which involves refining their ability to process & understand…
Large Language Models (LLMs) like GPT-3 and ChatGPT exhibit exceptional capabilities in complex reasoning tasks such as mathematical problem-solving and code generation, far surpassing standard supervised machine learning techniques. The key to unlocking these advanced reasoning abilities lies in the chain of thought (CoT), which refers to the ability of the model to generate intermediate…