Support Vector Machines (SVMs) are a powerful and versatile supervised machine learning algorithm primarily used for classification and regression tasks. They excel in high-dimensional spaces and are particularly effective when dealing with complex datasets. The core principle behind SVM is to identify the optimal hyperplane that effectively separates data points into different classes while maximizing…
Large Language Models (LLMs) have revolutionized artificial intelligence applications across various fields, enabling domain experts to use pre-trained models for innovative solutions. While LLMs excel at tasks like summarization, correlation, and inference, developing LLM-based applications remains a dynamic area of research across various input sources. Knowledge Graphs (KGs) serve as powerful tools that can be…
Understanding biomolecular interactions is crucial for fields like drug discovery and protein design. Traditionally, determining the three-dimensional structure of proteins and other biomolecules required costly and time-consuming laboratory experiments. AlphaFold3, launched in 2024, revolutionized the field by demonstrating that deep learning could achieve experimental-level accuracy in predicting biomolecular structures, including complex interactions. Despite these advances,…
Modern language models have transformed our daily interactions with technology, offering tools that help draft emails, write articles, code software, and much more. However, these powerful models often come with significant limitations. Many language models today are hamstrung by overly cautious guardrails that restrict certain types of information or enforce a predetermined moral stance. While…
Artificial intelligence systems often struggle with retaining meaningful context over extended interactions. This limitation poses challenges for applications such as chatbots and virtual assistants, where maintaining a coherent conversation thread is essential. Most traditional AI models operate in a stateless manner, focusing solely on immediate inputs without considering the continuity of prior exchanges. This lack…
Developments in simulating particulate flows have significantly impacted industries ranging from mining to pharmaceuticals. Particulate systems consist of granular materials interacting with each other and surrounding fluids, and their accurate modeling is critical for optimizing processes. However, traditional numerical methods like the Discrete Element Method (DEM) face substantial computational limitations. These methods track particle movements…
Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse applications, but their widespread adoption faces significant challenges. The primary concern stems from training datasets that contain varied, unfocused, and potentially harmful content, including malicious code and cyberattack-related information. This creates a critical need to align LLM outputs with specific user requirements while preventing misuse.…
Multi-label text classification (MLTC) assigns multiple relevant labels to a text. While deep learning models have achieved state-of-the-art results in this area, they require large amounts of labeled data, which is costly and time-consuming. Active learning helps optimize this process by selecting the most informative unlabeled samples for annotation, reducing the labeling effort. However, most…
Model efficiency is important in the age of large language and vision models, but they face significant efficiency challenges in real-world deployments. Critical metrics such as training compute requirements, inference latency, and memory footprint impact deployment costs and system responsiveness. These constraints often limit the practical implementation of high-quality models in production environments. The need…
Data visualization is a powerful technique that transforms complex data into easily understandable visual representations. Let us explore how data visualization can help with graphs. Applying data visualization to graphs allows us to examine intricate relationships between entities, identify patterns, and uncover insights that might be hidden within the data. By visually mapping nodes and…