Large Language Models (LLMs) have demonstrated remarkable proficiency in language generation tasks. However, their training process, which involves unsupervised learning from extensive datasets followed by supervised fine-tuning, presents significant challenges. The primary concern stems from the nature of pre-training datasets, such as Common Crawl, which often contain undesirable content. Consequently, LLMs inadvertently acquire the ability…
Language model adaptation is a crucial area in artificial intelligence, focusing on enhancing large pre-trained language models to work effectively across various languages. This research is vital for enabling these models to understand and generate text in multiple languages, which is essential for global AI applications. Despite the impressive performance of LLMs in English, their…
Large language models (LLMs) have shown exceptional capabilities in understanding and generating human language, making substantial contributions to applications such as conversational AI. Chatbots powered by LLMs can engage in naturalistic dialogues, providing a wide range of services. The effectiveness of these chatbots relies heavily on high-quality instruction-following data used in post-training, enabling them to…
Evaluating the performance of large language model (LLM) inference systems using conventional metrics presents significant challenges. Metrics such as Time To First Token (TTFT) and Time Between Tokens (TBT) do not capture the complete user experience during real-time interactions. This gap is critical in applications like chat and translation, where responsiveness directly affects user satisfaction.…
Large Language Models (LLMs) built on the Transformer architecture have recently attained important technological milestones. The remarkable skills of these models in comprehending and producing writing that resembles that of a human have had a significant impact on a variety of Artificial Intelligence (AI) applications. Although these models function admirably, there are many obstacles to…
Collecting, monitoring, and maintaining a web data pipeline can be daunting and time-consuming when dealing with large amounts of data. Traditional approaches’ struggles can compromise data quality and availability with pagination, dynamic content, bot detection, and site modifications. Building an in-house technical staff or outsourcing to a low-cost nation are two common options for companies…
Transformer-based LLMs like ChatGPT and LLaMA excel in tasks requiring domain expertise and complex reasoning due to their large parameter sizes and extensive training data. However, their substantial computational and storage demands limit broader applications. Quantization addresses these challenges by converting 32-bit parameters to smaller bit sizes, enhancing storage efficiency and computational speed. Extreme quantization,…
In robotics, understanding the position and movement of a sensor suite within its environment is crucial. Traditional methods, called Simultaneous Localization and Mapping (SLAM), often face challenges with unsynchronized sensor data and require complex computations. These methods must estimate the position at discrete time intervals, making it difficult to handle data from various sensors that…
Large Language Models (LLMs) like GPT-4 exhibit impressive capabilities in text generation tasks such as summarization and question answering. However, they often produce “hallucinations,” generating content that is factually incorrect or contextually irrelevant. The problem is particularly acute when the LLMs are provided with correct facts but still produce inaccurate outputs, termed “contextual hallucinations.” These…
The Retrieval-Augmented Generation (RAG) pipeline includes four major steps— generating embeddings for queries and documents, retrieving relevant documents, analyzing the retrieved data, and generating the final response. Each of these steps. requires separate queries and tools, resulting in a cumbersome, time-consuming, and potentially error-prone process. For example, generating embeddings might involve using a machine learning…