←back to Blog

Investigation of the Relevance of CYP3A4 Inhibition on the Pharmacokinetics of the Novel P2X3 Antagonist Filapixant: Results of In Vitro Explorations and a Fixed-Sequence Clinical Trial with Itraconazole in Healthy Volunteers

Int J Mol Sci. 2025 Oct 20;26(20):10177. doi: 10.3390/ijms262010177.

ABSTRACT

Hypersensitized P2X3 receptor signaling has been described to play a role in several disorders, including chronic cough. The goal of our in vitro and in vivo studies was to investigate the biotransformation and the influence of CYP3A4 inhibition on the pharmacokinetics of the selective P2X3 antagonist filapixant. Metabolic turnover of filapixant in human liver microsomes and hepatocytes was moderate to high, indicating a complex metabolic pattern with mainly oxidative biotransformation. In recombinant CYP enzymes, depletion of filapixant was observed mainly with CYP3A4 and, to a significantly lesser extent, with CYP1A1, 2D6, 2J2, and 3A5. Drug depletion of [3H]filapixant and metabolite formation in human liver microsomes was significantly inhibited in the presence of strong CYP3A4 inhibitors, whereas other CYP isoform-selective inhibitors showed no or very minor effects. Co-administration of multiple daily doses of 200 mg itraconazole with 80 mg filapixant in humans increased the AUC and Cmax of filapixant to 4.01 and 1.89-fold, respectively, indicating that filapixant is a moderately sensitive CYP3A4 substrate. Co-administration of itraconazole also prolonged the half-life of filapixant from 12.1 h to 22.8 h. Overall, changes in AUC, Cmax, and half-life indicate that both the bioavailability and elimination of filapixant were affected. Filapixant was well tolerated alone and in combination with itraconazole.

PMID:41155469 | DOI:10.3390/ijms262010177